

N
C

S
C

 International Journal of Computer Networks and Communications Security

VOL. 2, NO. 7, JULY 2014, 216–224
Available online at: www.ijcncs.org
ISSN 2308-9830

Use of Decision Trees and Attributional Rules in Incremental
Learning of an Intrusion Detection Model

Abdurrahman A. Nasr1, Mohamed M. Ezz2, Mohamed Z. Abdulmageed3

1 Assistant lecturer, Al-Azhar University, Cairo, Egypt, Faculty of Engineering, Systems and Com. Dept.

2 Assistant professor, Al-Azhar University, Cairo, Egypt, Faculty of Engineering, Systems and Com. Dept.

3 Professor emeritus, Al-Azhar University, Cairo, Egypt, Faculty of Engineering, Systems and Com. Dept.

E-mail: 1anasr@azhar.edu.eg, 2ezz.mohamed@gmail.com, 3azhar@mailer.eun.eg

ABSTRACT

Current intrusion detection systems are mostly based on typical data mining techniques. The growing
prevalence of new network attacks represents a well-known problem which can impact the availability,
confidentiality, and integrity of critical information for both individuals and enterprises. In this paper, we
propose a Learnable Model for Anomaly Detection (LMAD), as an ensemble real-time intrusion detection
model using incremental supervised machine learning techniques. Such techniques are utilized to detect
new attacks. The proposed model is based on making use of two different machine learning techniques,
namely, decision trees and attributional rules classifiers. These classifiers comprise an ensemble that
provides bagging for decision making. Our experimental results showed that, the model automatically
learns new rules from continuous network stream, such that it can efficiently discriminate between anomaly
and normal connections, offering the advantage of being deployed on any environment. The model is
intensively tested online and its evaluation showed promising results.

Keywords: Decision Trees, AQ, Incremental Classifier, Ensemble, Intrusion Detection.

1 INTRODUCTION

Incremental learning addresses the ability of
repeatedly training a network by using new data
without destroying old prototype patterns. The
fundamental issue for incremental learning in
intrusion detection systems (IDS) is how IDS can
adapt itself to detect new attacks without getting
corrupted or forgetting previously learned
information: the so-called stability-plasticity
dilemma [1]. IDS is one of the most essential
component for security infrastructures in network
environments, and it is widely used in detecting,
identifying and tracking the intruders [2]. With the
increasing and diversified types of novel network
attacks, intrusion detection systems need to cope
with non-stationary changing situations in
environment by employing adaptive mechanisms to
accommodate changes in the data. This becomes
more important when huge stream of data arrives
continuously and over long periods of time. In such
situations, the system should adapt itself to the new

data samples which may convey a changing
situation and at the same time should keep in
memory relevant information that had been learned
in the remote past [3]. Two main directions
dominate the intrusion detection field; misuse
detection and Anomaly detection [4]. The misuse
detection is characterized by precision and
accurateness. But it covers only the known attacks,
while the anomaly based detection utilizes different
data mining techniques for identifying anomaly
from normal patterns. The result is promising in
detecting new attacks but it generates a high rate of
false alerts.

In this paper, we focus on adaptive incremental
learning (AIL) which seeks to deal with continuous
network traffics arriving over time, and coping with
concept drift. We utilize ensemble of different
incremental data mining techniques for
discriminating between normal and anomalous
connections. A wide range of data mining
algorithms have been employed in anomaly
detection including, Support vector machine[5],

217

A. A. Nasr et. al / International Journal of Computer Networks and Communications Security, 2 (7), July 2014

Artificial neural network[6], decision trees[7],
Bayesian network[8] and many others[9]. A
comprehensive review about machine learning
algorithms in intrusion detection can be found in [9,
10]. These anomaly based IDS models are endowed
with a generalization capacity that covers new
unknown attacks patterns, nevertheless, the
generalization power reaches its limit through time
because of new emerging attack methods which
represents a significant concept drift from already
learned concepts. The permanent coverage of new
attack patterns remains unreachable goal for the
existing IDSs which become notably inefficient
through time [3]. Hence To keep IDS learnt with
novel attacks patterns, the IDS must adapt itself to
every change in its target environment. The
adaptability is the beginning of new generation of
learning IDSs, called adaptive IDSs, which
constitutes a qualitative jump in intrusion detection
in terms of performance, efficiency and
sustainability. The rest of this paper is organized as
follows: Section 2 highlights related work about
current IDSs and their limitations. Section 3
describes our learnable model for anomaly
detection (LMAD). Section 4 presents an
illustrative example on the proposed model. Section
5 presents the experimental results and evaluation
process of the model. Section 6 summarizes the
proposed model.

2 RELATED WORK

Many data mining algorithms have been applied
to intrusion detection, which can be divided into
typical offline algorithms and incremental online
algorithms. Most researchers have concentrated on
off-line intrusion detection using a well-known
KDD99 benchmark dataset to verify their IDS
development. The KDD99 [11] dataset is a
statistically preprocessed dataset which has been
available from DARPA since 1999[12]. In 1990,
Hansen et al. [13] showed that the combination of
several artificial neural networks can drastically
improve the accuracy of the predictions. The same
year, Schapire showed theoretically that if weak
classifiers are combined, it is possible to obtain an
arbitrary high accuracy [14]. Abraham et al. [15]
proposed an ensemble composed of different types
of artificial neural networks (ANN), support vector
machines (SVM) with radial basis function kernel,
and multivariate adaptive regression splines
(MARS) combined using bagging techniques was
compared to the results obtained by each algorithm
executed separately. Five years later, Abraham et

al. [16] explored the combination of classification
and regression trees (CART) and Bayesian
networks (BN) in an ensemble using bagging
techniques, as well as the performance of the two
algorithms when executed alone. Syed et al. [17]
proposed the incremental SVM. Zhang et al. [18]
extended the traditional SVM, Robust SVM and
one-class SVM to be of online forms. Baowen et al.
[19] proposed an incremental algorithm for mining
association rules. The algorithm considers not only
adding new data into the knowledge base but also
reducing old data from the knowledge base. Shafi et
al. [20] proposed an Adaptive Rule based Intrusion
Detection Architecture, which integrates a signature
rules base with a Learning Classifier System (LCS)
to produce interpretable rules. It allows learning
new attack and normal behavior patterns by
interacting with a security expert. Labib et al. [21]
developed a real-time IDS using Self Organizing
Maps (SOM) to detect normal network activity and
DoS attack. They preprocessed their dataset to have
10 features for each data record. Each record
contained information of 50 packets. Their IDS was
evaluated by human visualization for different
characteristics of normal data and DoS attack, but
no detection rate was reported. Khreich et al. [22]
proposed a system based on the receiver operating
characteristic (ROC) to efficiently adapt ensembles
of HMMs (EoHMMs) in response to new data,
according to a learn-and combine approach. The
proposed system is capable of changing the desired
operating point during operations, and those points
can be adjusted to changes in prior probabilities and
costs of errors. Alexander et al. [23] proposed an
ensemble approach of four decision trees and
feature selection algorithms, trained on different
sets of features, to detect the four attack types in
KDD’99 dataset. The main idea is to exploit the
strengths of each algorithm of the ensemble to
obtain a robust classifier. For a summary of most
research involving machine learning applied to
IDSs, see [24, 25].

Current intrusion detection models are mostly
based on typical machine learning algorithms. With
the accumulation of new samples, their training
time will continuously increase, and at the same
time, they have difficulties in adjusting themselves
in dynamic changing network environment. To
remedy the existing IDS models limitations and
institute intrinsic adaptability in IDS, we propose a
learnable intrusion detection model, which
combines the core of ensemble approach,
incremental learning, and real-time detection for
anomalous network connections.

218

A. A. Nasr et. al / International Journal of Computer Networks and Communications Security, 2 (7), July 2014

3 PROPOSED MODEL

Our model focuses on means of approaches that
promote adaptability by automatic incremental
learning ability when interacting with a dynamic
changing environment, so we are oriented toward
two types of incremental classifiers, namely,
Decision trees (Hoeffding Tree) [26] and Algorithm
Quasi-Optimal (AQ) [27][28]. These two machine
learning approaches are actually suggested based
on intensive research to build adaptive learning
intelligent systems in a dynamic changing
environment.

Figs [1, 2] give an overview of the proposed
model (LMAD). It consists of two phases, that is,
Offline training phase and incremental online
testing phase. In the next subsections, we will
explain in details the components of the (LMAD)
model.

3.1 Offline Phase

At the beginning, the offline phase is fed with
network training data for training incremental
classifiers. In this model, we use NSL-KDD [29]
dataset for training. NSL-KDD is a dataset
suggested to solve some of the inherent problems of
the KDD'99 dataset which are mentioned in [30].
The 20% subset of the training dataset
“KDDTrain+_20Percent“ [29] were used as it
contains a reasonable number of network records.

The second step in this phase represents the
feature extraction component. We build this
component over the research done in [31] for
extracting most valuable and relevant features
(MVRF). The output of this step will produce new
training dataset with 19 effective features.

Figure. 1. Offline phase for the proposed model

Figure 2. Incremental online phase for the proposed
model

The third step is to produce pair wise datasets for

1-vs-1 model classification. This will produce 10
datasets containing 2 different classes in each
dataset. Table [1] lists common attack classes in
KDD’99 dataset [32], while Table [2] represents
the statistics for each pair wise dataset; some pair
wise datasets have been post processed to prevent
bias toward dominant class and solve for
imbalanced dataset. For example, all U2R records
in all datasets have been increased in a reasonable
fashion using synthetic minority oversampling
technique (SMOTE)[33].

Table 1. Attacks presented in KDD’99 dataset

Attack
Class

Attack type (subclass)

Probe portsweep, ipsweep, queso, satan,
msscan,

ntinfoscan, lsdomain, illegal-sniffer

DoS apache2, smurf, neptune, dosnuke, land,
pod, back, teardrop, tcpreset, syslogd,

crashiis, arppoison,
mailbomb, selfping, processtable,

udpstorm, warezclient

R2L dict, netcat, sendmail, imap, ncftp, xlock,
xsnoop, sshtrojan,

framespoof, ppmacro, guest, netbus,
snmpget, ftpwrite,

httptunnel, phf, named

U2R sechole, xterm, eject, ps, nukepw, secret,
perl, yaga, fdformat, ffbconfig, casesen,
ntfsdos, ppmacro, loadmodule, sqlattack

219

A. A. Nasr et. al / International Journal of Computer Networks and Communications Security, 2 (7), July 2014

Table 2. Pair wise datasets for 1-vs-1 classification

Pair wise
Dataset

Records
count

Class-1
distribution

Class-2
distribution

Post
processing

NORMAL-
DOS

22683 13449
(53%

Normal)

9234
(47%
DOS)

-

NORMAL-
PROBE

15738 13449
(85%

Normal)

2289
(15%

PROBE)

-

NORMAL-
R2L

13659 13449
(98%

Normal)

210
(2% R2L)

SMOTE[3
3]

NORMAL-
U2R

13461 13449
(99%

Normal)

11
(<1%
U2R)

SMOTE[3
3]

DOS-
PROBE

11524 9234
(80%
DOS)

2289
(20%

PROBE)

-

DOS-R2L 9444 9234
(97%
DOS)

210
(3% R2L)

-

DOS-U2R 9246 9234
(99%
DOS)

11
(<1%
U2R)

SMOTE[3
3]

PROBE-
R2L

2499 2289
(91%

PROBE)

210
(9% R2L)

-

PROBE-
U2R

2301 2289
(99%

PROBE)

11
(<1%
U2R)

SMOTE[3
3]

R2L-U2R 221 210
(94% R2L)

11
(6% U2R)

SMOTE[3
3]

 Total

records

25243

The fourth step is to train each pair wise dataset

on incremental classification algorithm to produce
10 unique trained classifiers. In this model, we use
two powerful incremental learning algorithms,
namely Hoeffding trees [26], a variant of decision
trees algorithm and AQ [27], a type of Attributional
calculus rule induction algorithm. The output of
this step will produce a total of 20 trained
classifiers for the previously mentioned algorithms.

Hoeffding decision trees were introduced by
Domingos and Hulten in [26]. They refer to their
implementation as VFDT, an acronym for Very
Fast Decision Tree learner. Decision trees are being
studied because they represent current state-of-the-
art for classifying high speed data streams. The
algorithm fulfills the requirements necessary for
coping with data streams while remaining efficient.
The Decision tree induction algorithm induces a
decision tree from a data stream incrementally,
briefly inspecting each example in the stream only
once, without need for storing examples after they
have been used to update the tree internal
information. Domingos and Hulten presented a
proof based on Decision bound (a.k.a additive

Chernoff bound)[34] guaranteeing that a Hoeffding
tree will be very close to a decision tree learned via
batch learning. They showed that the algorithm can
produce trees of the same quality as batch learned
trees; despite being induced in an incremental
fashion.

Algorithm Quasi-optimal (AQ) was introduced
by Michalski in 1973 [35]. AQ is a powerful
machine learning methodology aimed at learning
symbolic induction rules from a set of examples
and counterexamples. The algorithm learns
hypotheses in the form of Attributional Rules [35].
The simplest form of Attributional rules is

Antecedent Part  Consequent Part
Where antecedent and consequent are complexes;

conjunctions of Attributional conditions, for
example

[src_bytes = 20...180] & [Service = vmnet OR
ftp] &[Protocol = tcp]  [Attack=R2L]

Which means that an attack is of type R2L if
src_bytes ranges from [20-180], and service in
{vmnt, ftp} and protocol in {tcp}. In its newest
implementations, AQ is a powerful incremental
classifier with many new features to the original

220

A. A. Nasr et. al / International Journal of Computer Networks and Communications Security, 2 (7), July 2014

AQ, and produced a highly versatile learning
methodology with expressive representation
language, able to tackle complex and diverse
learning problems in machine learning [27]. AQ
algorithm is best explained in [35].

The fifth step is to evaluate the 20 trained
classifiers produced from step 4, using cross
validation. The evaluation step at this stage gives an
initial perception about the classification accuracy
in term of detection rate, false positive rate and
other validation metrics. The output of this
component is 20 trained models along with their
evaluation statistics report. Section 5 summarizes
the evaluation results.

By this end, we finish the offline training phase.
The 20 models generated from the previous step are
retained for future use in online phase, which will
be discussed in the next subsection.

3.2 Online Phase

Fig [2] represents the online phase. At the
beginning, new unseen records (test data) are fed
into the feature extraction components, to extract
effective feature.

The next step is to classify the incoming records
using the previously generated model from offline
phase. The records are fed as sequential data (to
simulate network stream) into the 20 classifiers to
be classified. The results obtained from this step is
an intermediate result, as each one of 20 classifiers
produce a predicted class corresponds to one of the
4 attacks or flag the record as normal.

In the third step, we use the Bagging approach to
figure out one of 4 attacks/normal classes. This step
outputs soft classification (class probabilities) by
voting over all classes returned from the previous
step, this output would be useful in case of cost
sensitive classification. For example, on a single
record, the output of the Bagging component
outputs the following probabilities:

3 out of 20 classifiers produced Normal

class P (Normal) =0.15
7 out of 20 classifiers produced Dos

class P (DoS) =0.35
4 out of 20 classifiers produced Probe

class P (Probe) =0.2
4 out of 20 classifiers produced R2L

class P (R2L) =0.2
2 out of 20 classifiers produced U2R

class P (U2R) =0.1

By this result, the bagging components flag the

record as DoS attack with probability of 35%, as it
represents the majority among others.

Two steps are involved at this level, the first is
the classification shown above, and the second is to
incrementally update (learn) the corresponding
classifiers (generated from offline model) of the
predicted value with new information obtained
from record features and predicted result. For
instance, in the previous example, all DoS
classifiers will be updated. This ensures the model
to be updated with the latest environment changes,
yielding it adaptable to concept drift and deployable
over diverse environments.

4 ILLUSTRATIVE EXAMPLE

To ensure the practicality and validity of the
proposed model, we carried out an implementation
for (LMAD). All components mentioned in the
model have been implemented using Java
programming language, WEKA [36], which is an
open source tool for machine learning algorithms
and data mining tasks, and massive online analysis
(MOA) [37] which is an open source framework for
data stream mining and big data processing. For
training (offline) phase, 20% of NSL-KDD training
dataset was used for training the model, and 20% of
NSL-KDD test dataset was used for testing online
phase. The testing data was fed into online phase as
a stream, and then prequential evaluation [38] was
carried out.

In what follows, we explain in details the idea for
incremental learning for both Decision trees and
AQ algorithms. We illustrate the idea by small
subset of network audit records (around 50
records), applied sequentially on single pair wise
classifier, namely, the R2L-U2R classifier in both
algorithms. By doing this, we ensure that the
generated information is comprehensible, tangible
and the idea can be generalized to whole model.

Table [3] lists first 5 records out of 50 random
instances, and 3 features out of 19 features. The
information illustrated in this table is shortened for
convenience. The records are fed sequentially into
both decision tree and AQ algorithms to dig out
internal parameter adaptation of the algorithms
based on incoming feature vector. After the first 4
records, Decision trees generated the following
rules:

service = vmnet: predict R2L (4.000) using
adaptive Naïve Bayes

service = ntp_u: predict U2R (2.000) using
adaptive Naïve Bayes

This means that, decision tree generated one node
(service), and 2 leafs (vmnet, ntp_u). At each leaf,
the number of corresponding instances is stored,
and the prediction strategy uses adaptive naïve

221

A. A. Nasr et. al / International Journal of Computer Networks and Communications Security, 2 (7), July 2014

Bayes, which is a combination of Naïve Bayes and
majority class classification. Fig [3] visualizes the
whole generated tree after 50 records have been
processed.

Table. 3. First 5 network records in incremental learning

Record Protocol Service dst_host_srv_count Class

1 tcp vmnet 255 R2L

2 tcp vmnet 60 R2L

3 tcp ntp_u 81 U2R

4 tcp vmnet 26 R2L

5 tcp ntp_u 2 U2R

……. ….. …… …… …..

Figure. 3. Decision tree after processing 50 records

The same experiment was carried on AQ
algorithm. The following rules were generated after
the first 4 records (generated rules are trimmed for
better comprehension):

Predict class U2R IF:

 protocol_type in {tcp} ^ service in {ntp_u} ^
dst_host_srv_count=81.0  (1)

Predict class R2L IF:

 protocol_type in {tcp} ^ service in {vmnet} ^
26.0<=dst_host_srv_count<=255.0 (3)

The last number between brackets represents the
number of corresponding class instances observed
so far. After processing the 50 records, the
following rules were generated (generated rules are
trimmed for better comprehension):

Predict class U2R IF:

a. protocol_type in {tcp,icmp,udp} ^ service
in {vmnet,ftp,telnet}^
1.0<=dst_host_srv_count<=4.0  (15)

b. protocol_type in {tcp,icmp,udp} ^ service
in {ntp_u,ftp_data,other} ^
2.0<=dst_host_srv_count<=81.0 (12)

Predict class R2L IF:

a. protocol_type in {tcp,icmp,udp} ^ service
in {vmnet,ftp_data,ftp} ^
26.0<=dst_host_srv_count<=255.0 (22)

b. protocol_type in {tcp} ^ service in {imap4}
^dst_host_srv_count=9.0 (1)

Comparing the output of the 2 algorithms, the
generated rules from both algorithms are
homogenous, non-contradictory and tangible.

Now, assume for the moment, we have a test
record in the form [protocol=tcp, service=ftp_data,
dst_host_srv_count=50]. If the model is to classify
the testing record after it has learnt from the past 50
records, it will classify the record as R2L attack,
based on the previous rules from both algorithms.
By these results, we ensure the model practicality
and validity to be deployed in any environment,
since the learned rules conform to a valid
discrimination between different classes.

5 EXPERIMENTAL RESULTS

This section summarized the results of (LMAD)
model obtained by testing and evaluation
techniques. There are two evaluation techniques;
each one corresponds to specific phase of the
model. For offline phase, we used 10-fold cross
validation to grasp initial measures of the model
validity. Table [4, 5] lists different evaluation
metrics for Decision tree and AQ algorithms
respectively. DR is the detection rate of the
classifier, FP is the false positive rate, and F-
Measure is the harmonic mean of the classifier,
which considers both precision and recall. RMSE is
the root mean square error while AUC is the area
under the ROC curve [39].

For online phase, we use prequential evaluation
approach (a.k.a Interleaved Test-Then-Train). Cross
validation can’t be used here, as the test records are
fed as stream of network connections to the model,
and cross validation requires the data to be fully
present. Prequential testing is an alternate scheme
for evaluating data stream algorithms [35] . Each
individual example can be used to test the model
before it is used for training, and from this, the
accuracy can be incrementally updated. When
intentionally performed in this order, the model is
always being tested on examples it has not seen
[40]. Tables [6, 7, 8] lists 5x5 confusion matrix for
the online phase after observing 7000, 8000, 12000
testing records respectively. The accuracy of the
model has increased from 80% to 82.5% to 85%
respectively. Tables [9-11] preview another
perspective (2x2 confusion matrix) for the previous
results. Comparing the results of such experimental
work with the results of [23], we found that the
average accuracy of our work is 85% relative to
80% for 41 features used in the ensemble given in
[23], which consists of decision trees only.

222

A. A. Nasr et. al / International Journal of Computer Networks and Communications Security, 2 (7), July 2014

Table. 4. Offline model evaluation statistics for Decision
tree

Pair wise
Classifier

Metric DR FPR F-
Measure

RMSE AUC

NORMAL-DOS 99% 1% 0.99 0.086 0.99

NORMAL-PROBE 97% 16% 0.96 0.15 0.99

NORMAL-R2L 96% 6% 0.96 0.192 0.93

NORMAL-U2R 97% 2% 0.97 0.158 0.98

DOS-PROBE 93% 8% 0.93 0.2 0.97

DOS-R2L 99% 8% 0.99 0.057 0.98

DOS-U2R 95% 25% 0.95 0.034 0.84

PROBE-R2L 99% 6% 0.99 0.096 0.98

PROBE-U2R 96% 1% 0.963 0.184 0.99

R2L-U2L 85% 18% 0.871 0.427 0.7

Table. 5. Offline model evaluation statistics for AQ

Pair wise
Classifier

Metric DR FPR F-Measure RMS
E

AUC

NORMAL-DOS 99% 0.2
%

0.99 0.04 0.99

NORMAL-PROBE 97% 2% 0.99 0.1 0.98

NORMAL-R2L 99% 2% 0.99 0.1 0.98

NORMAL-U2R 99% 0.2
%

0.99 0.03 0.99

DOS-PROBE 97% 3% 0.99 0.08 0.98

DOS-R2L 100
%

1% 1.0 0.01 0.99

DOS-U2R 100
%

9% 1.0 0.01 0.95

PROBE-R2L 99% 1% 0.99 0.05 0.99

PROBE-U2R 98% 0.3
%

0.99 0.04 0.99

R2L-U2L 97% 6% 0.97 0.16 0.95

Table. 6. Confusion matrix for online phase after
observing 7000 records

Actual Predicted Normal DoS Probe R2L U2R

Normal 1113 23 54 80 0

DoS 260 401
4

68 0 0

Probe 275 49 1058 28 0

R2L 504 1 4 1200 0

U2R 11 0 0 0 3

Table. 7. Confusion matrix for online phase after
observing 8000 records

Actual Predicted Normal DoS Probe R2L U2R

Normal 1280 27 57 91 0

DoS 181 2720 52 0 0

Probe 282 49 1233 28 0

R2L 554 1 5 1400 0

U2R 15 0 0 21 4

Table 8- Confusion matrix for online phase after
observing 12000 records

Actual Predicted Normal DoS Probe R2L U2R

Normal 1899 34 76 141 2

DoS 260 4014 68 0 0

Probe 298 52 2023 29 0

R2L 764 1 6 2115 1

U2R 24 0 0 36 7

Table 9. 2x2 Confusion matrix for table [6]

Actual Predicted Normal Anomaly

Normal 1113 175

Anomaly 1050 4662

Table 10. 2x2 Confusion matrix for table [7]

Actual Predicted Normal Anomaly

Normal 1280 175

Anomaly 1032 5513

Table 11. 2x2 Confusion matrix for table [8]

Actual Predicted Normal Anomaly

Normal 1899 253

Anomaly 1346 8502

6 CONCLUSION

In this paper, a new learnable real-time model has
been proposed for anomaly detection using
ensemble of incremental classifiers. The model is
built using decision trees and AQ classifiers. Such
model has been tested using the NSL-KDD’99
dataset, and it showed that it is capable to learn new
rules from the input stream. The model confusion
matrix showed that model accuracy has increased
gradually from 80% to 85% after extra records have
been processed.

7 REFERENCES

[1] G. A. Carpenter and S. Grossberg, “The ART
of adaptive pattern recognition by a self-
organizing neural network,” IEEE Comput.,
vol. 21, no. 3, pp. 77–88, Mar. 1988.

223

A. A. Nasr et. al / International Journal of Computer Networks and Communications Security, 2 (7), July 2014

[2] J. H. Lee, J. H. Leet, S. G. Sohn, J. H. Ryu, and
T. M. Chung, “Effective value of decision tree
with KDD 99 intrusion detection datasets for
intrusion detection system,” in International
Conference on Advanced Communication
Technology, ICACT, 2008, vol. 2, pp. 1170–
1175.

[3] H. Bensefia and N. Ghoualmi, “A New
Approach for Adaptive Intrusion Detection,”
2011 Seventh Int. Conf. Comput. Intell. Secur.,
pp. 983–987, Dec. 2011.

[4] W. Lee, S. Stolfo, and K. Mok, “Adaptive
Intrusion Detection: A Data Mining
Approach,” Artif. Intell. Rev., vol. 14, no. 6,
pp. 533–567, 2000.

[5] C. Modi, D. Patel, B. Borisaniya, H. Patel, A.
Patel, and M. Rajarajan, “A survey of intrusion
detection techniques in Cloud,” J. Netw.
Comput. Appl., vol. 36, no. 1, pp. 42–57, Jan.
2013.

[6] A. Patcha and J.-M. Park, “An overview of
anomaly detection techniques: Existing
solutions and latest technological trends,”
Comput. Networks, vol. 51, no. 12, pp. 3448–
3470, Aug. 2007.

[7] S. S. Sivatha Sindhu, S. Geetha, and A.
Kannan, “Decision tree based light weight
intrusion detection using a wrapper approach,”
Expert Syst. Appl., vol. 39, no. 1, pp. 129–141,
Jan. 2012.

[8] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-
Fernández, and E. Vázquez, “Anomaly-based
network intrusion detection: Techniques,
systems and challenges,” Comput. Secur., vol.
28, no. 1–2, pp. 18–28, Feb. 2009.

[9] H.-J. Liao, C.-H. Richard Lin, Y.-C. Lin, and
K.-Y. Tung, “Intrusion detection system: A
comprehensive review,” J. Netw. Comput.
Appl., vol. 36, no. 1, pp. 16–24, Jan. 2013.

[10] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y.
Lin, “Intrusion detection by machine learning:
A review,” Expert Syst. Appl., vol. 36, no. 10,
pp. 11994–12000, Dec. 2009.

[11] “KDD Cup 1999 Dataset.” [Online]. Available:
http://kdd.ics.uci.edu/databases/kddcup99/kddc
up99.html. [Accessed: 23-Jun-2014].

[12] C.-M. Chen, Y.-L. Chen, and H.-C. Lin, “An
efficient network intrusion detection,” Comput.
Commun., vol. 33, no. 4, pp. 477–484, Mar.
2010.

[13] L. K. Hansen and P. Salamon, “Neural network
ensembles,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 12, no. 10, pp. 993–1001, 1990.

[14] R. E. Schapire, “The strength of weak
learnability,” Mach. Learn., vol. 5, no. 2, pp.
197–227, Jun. 1990.

[15] S. Mukkamala, A. H. Sung, and A. Abraham,
“Intrusion detection using an ensemble of
intelligent paradigms,” J. Netw. Comput.
Appl., vol. 28, no. 2, pp. 167–182, Apr. 2005.

[16] S. Chebrolu, A. Abraham, and J. P. Thomas,
“Hybrid feature selection for modeling
intrusion detection systems,” in Neural
Information Processing, 2004, pp. 1020–1025.

[17] N. A. Syed, H. Liu, and K. K. Sung, “Handling
concept drifts in incremental learning with
support vector machines,” in Proceedings of
the fifth ACM SIGKDD international
conference on Knowledge discovery and data
mining - KDD ’99, 1999, pp. 317–321.

[18] Z. Zhang and H. Shen, “Application of online-
training SVMs for real-time intrusion detection
with different considerations,” Comput.
Commun., vol. 28, no. 12, pp. 1428–1442, Jul.
2005.

[19] B. Xu, T. Yi, F. Wu, and Z. Chen, “An
incremental updating algorithm for mining
association rules,” J. Electron., vol. 19, no. 4,
pp. 403–407, Oct. 2002.

[20] K. Shafi, H. A. Abbass, and W. Zhu, “An
Adaptive Rule-based Intrusion Detection
Architecture,” Secur. Technol. Conf. 5th
Homel. Secur. Summit, Aust., pp. 345–355,
2006.

[21] K. Labib and R. Vemuri, “NSOM: A Real-
Time Network-Based Intrusion Detection
System Using Self-Organizing Maps,”
Networks Secur., 2002.

[22] W. Khreich, E. Granger, A. Miri, and R.
Sabourin, “Adaptive ROC-based ensembles of
HMMs applied to anomaly detection,” Pattern
Recognit., vol. 45, no. 1, pp. 208–230, Jan.
2012.

[23] A. Balon-perin and B. Gamback, “Ensembles
of Decision Trees for Network Intrusion
Detection Systems,” Int. J. Adv. Secur., vol. 6,
no. 1, pp. 62–77, 2013.

[24] M. H. Bhuyan, D. K. Bhattacharyya, and J. K.
Kalita, “Survey on Incremental Approaches for
Network Anomaly Detection,” Int. J. Commun.
Networks Inf. Secur., vol. 3, no. 3, p. 14, Nov.
2012.

[25] S. X. Wu and W. Banzhaf, “The use of
computational intelligence in intrusion
detection systems: A review,” Appl. Soft
Comput., vol. 10, no. 1, pp. 1–35, Jan. 2010.

[26] G. Hulten, L. Spencer, and P. Domingos,
“Mining time-changing data streams,” in ACM
SIGKDD Intl. Conf. on Knowledge Discovery
and Data Mining, 2001, pp. 97–106.

[27] G. Cervone, P. Franzese, and A. P. K. Keesee,
“Algorithm quasi-optimal (AQ) learning,”

224

A. A. Nasr et. al / International Journal of Computer Networks and Communications Security, 2 (7), July 2014

Wiley Interdiscip. Rev. Comput. Stat., vol. 2,
no. 2, pp. 218–236, Mar. 2010.

[28] J. Wojtusiak and R. S. Michalski, “The LEM3
implementation of learnable evolution model
and its testing on complex function
optimization problems,” in Proceedings of the
8th annual conference on Genetic and
evolutionary computation - GECCO ’06,
2006, p. 1281.

[29] “The NSL-KDD Data Set.” [Online].
Available: http://nsl.cs.unb.ca/NSL-KDD/.
[Accessed: 24-Jun-2014].

[30] M. Tavallaee, E. Bagheri, W. Lu, and A. A.
Ghorbani, “A detailed analysis of the KDD
CUP 99 data set,” in IEEE Symposium on
Computational Intelligence for Security and
Defense Applications, CISDA 2009, 2009.

[31] M. Salem and U. Buehler, “Mining Techniques
in Network Security to Enhance Intrusion
Detection Systems,” CoRR, p. 16, Dec. 2012.

[32] C. Thomas, V. Sharma, and N. Balakrishnan,
“Usefulness of DARPA Dataset for Intrusion
Detection System Evaluation,” Data Mining,
Intrusion Detect. Inf. Assur. Data Networks
Secur., p. 69730G–69730G–8, 2008.

[33] N. V. Chawla, K. W. Bowyer, L. O. Hall, and
W. P. Kegelmeyer, “SMOTE: Synthetic
Minority Over-sampling Technique,” J. Artif.
Intell. Res., vol. 16, pp. 321–357, Jun. 2011.

[34] W. Hoeffding, “Probability Inequalities for
Sums of Bounded Random Variables,” J. Am.
Stat. Assoc., vol. 58, no. 301, pp. 13–30, 1963.

[35] J. Wojtusiak and R. S. Michalski, “The LEM3
System for Non-Darwinian Evolutionary
Computation and Its Application to Complex
Function Optimization,” no. C, pp. 2005–2010,
2010.

[36] “Weka 3 - Data Mining with Open Source
Machine Learning Software in Java.” [Online].
Available:
http://www.cs.waikato.ac.nz/ml/weka/.
[Accessed: 24-Jun-2014].

[37] “MOA Massive Online Analysis, Data Stream
Analytics in Real Time.” [Online]. Available:
http://moa.cms.waikato.ac.nz/. [Accessed: 24-
Jun-2014].

[38] A. P. Dawid, “Present Position and Potential
Developments: Some Personal Views:
Statistical Theory: The Prequential Approach,”
J. R. Stat. Soc. Ser. A, vol. 147, no. 2, p. 278,
1984.

[39] A. P. Bradley, “The use of the area under the
ROC curve in the evaluation of machine
learning algorithms,” Pattern Recognit., vol.
30, no. 7, pp. 1145–1159, Jul. 1997.

[40] J. Gama, R. Sebastião, and P. P. Rodrigues,
“Issues in evaluation of stream learning
algorithms,” in Proceedings of the 15th ACM
SIGKDD international conference on
Knowledge discovery and data mining - KDD
’09, 2009, p. 329.

	Abdurrahman A. Nasr1, Mohamed M. Ezz2, Mohamed Z. Abdulmageed3

