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ABSTRACT 
 

Current intrusion detection systems are mostly based on typical data mining techniques. The growing 
prevalence of new network attacks represents a well-known problem which can impact the availability, 
confidentiality, and integrity of critical information for both individuals and enterprises. In this paper, we 
propose a Learnable Model for Anomaly Detection (LMAD), as an ensemble real-time intrusion detection 
model using incremental supervised machine learning techniques. Such techniques are utilized to detect 
new attacks. The proposed model is based on making use of two different machine learning techniques, 
namely, decision trees and attributional rules classifiers. These classifiers comprise an ensemble that 
provides bagging for decision making. Our experimental results showed that, the model automatically 
learns new rules from continuous network stream, such that it can efficiently discriminate between anomaly 
and normal connections, offering the advantage of being deployed on any environment. The model is 
intensively tested online and its evaluation showed promising results.    

Keywords: Decision Trees, AQ, Incremental Classifier, Ensemble, Intrusion Detection. 
 
1 INTRODUCTION  
 

Incremental learning addresses the ability of 
repeatedly training a network by using new data 
without destroying old prototype patterns. The 
fundamental issue for incremental learning in 
intrusion detection systems (IDS) is how IDS can 
adapt itself to detect new attacks without getting 
corrupted or forgetting previously learned 
information: the so-called stability-plasticity 
dilemma [1]. IDS is one of the most essential 
component for security infrastructures in network 
environments, and it is widely used in detecting, 
identifying and tracking the intruders [2]. With the 
increasing and diversified types of novel network 
attacks, intrusion detection systems need to cope 
with non-stationary changing situations in 
environment by employing adaptive mechanisms to 
accommodate changes in the data. This becomes 
more important when huge stream of data arrives 
continuously and over long periods of time. In such 
situations, the system should adapt itself to the new 

data samples which may convey a changing 
situation and at the same time should keep in 
memory relevant information that had been learned 
in the remote past [3]. Two main directions 
dominate the intrusion detection field; misuse 
detection and Anomaly detection [4]. The misuse 
detection is characterized by precision and 
accurateness. But it covers only the known attacks, 
while the anomaly based detection utilizes different 
data mining techniques for identifying anomaly 
from normal patterns. The result is promising in 
detecting new attacks but it generates a high rate of 
false alerts.  

In this paper, we focus on adaptive incremental 
learning (AIL) which seeks to deal with continuous 
network traffics arriving over time, and coping with 
concept drift. We utilize ensemble of different 
incremental data mining techniques for 
discriminating between normal and anomalous 
connections. A wide range of data mining 
algorithms have been employed in anomaly 
detection including, Support vector machine[5], 
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Artificial neural network[6], decision trees[7], 
Bayesian network[8] and many others[9]. A 
comprehensive review about machine learning 
algorithms in intrusion detection can be found in [9, 
10]. These anomaly based IDS models are endowed 
with a generalization capacity that covers new 
unknown attacks patterns, nevertheless, the 
generalization power reaches its limit through time 
because of new emerging attack methods which 
represents a significant concept drift from already 
learned concepts. The permanent coverage of new 
attack patterns remains unreachable goal for the 
existing IDSs which become notably inefficient 
through time [3]. Hence To keep IDS learnt with 
novel attacks patterns, the IDS must adapt itself to 
every change in its target environment. The 
adaptability is the beginning of new generation of 
learning IDSs, called adaptive IDSs, which 
constitutes a qualitative jump in intrusion detection 
in terms of performance, efficiency and 
sustainability. The rest of this paper is organized as 
follows: Section 2 highlights related work about 
current IDSs and their limitations. Section 3 
describes our learnable model for anomaly 
detection (LMAD). Section 4 presents an 
illustrative example on the proposed model. Section 
5 presents the experimental results and evaluation 
process of the model. Section 6 summarizes the 
proposed model. 

 
2 RELATED WORK 

 

Many data mining algorithms have been applied 
to intrusion detection, which can be divided into 
typical offline algorithms and incremental online 
algorithms. Most researchers have concentrated on 
off-line intrusion detection using a well-known 
KDD99 benchmark dataset to verify their IDS 
development. The KDD99 [11] dataset is a 
statistically preprocessed dataset which has been 
available from DARPA since 1999[12].  In 1990, 
Hansen et al. [13] showed that the combination of 
several artificial neural networks can drastically 
improve the accuracy of the predictions.  The same 
year, Schapire showed theoretically that if weak 
classifiers are combined, it is possible to obtain an 
arbitrary high accuracy [14]. Abraham et al. [15] 
proposed an ensemble composed of different types 
of artificial neural networks (ANN), support vector 
machines (SVM) with radial basis function kernel, 
and multivariate adaptive regression splines 
(MARS) combined using bagging techniques was 
compared to the results obtained by each algorithm 
executed separately. Five years later, Abraham et 

 

al. [16] explored the combination of classification 
and regression trees (CART) and Bayesian 
networks (BN) in an ensemble using bagging 
techniques, as well as the performance of the two 
algorithms when executed alone. Syed et al. [17] 
proposed the incremental SVM. Zhang et al. [18] 
extended the traditional SVM, Robust SVM and 
one-class SVM to be of online forms. Baowen et al. 
[19] proposed an incremental algorithm for mining 
association rules. The algorithm considers not only 
adding new data into the knowledge base but also 
reducing old data from the knowledge base. Shafi et 
al. [20] proposed an Adaptive Rule based Intrusion 
Detection Architecture, which integrates a signature 
rules base with a Learning Classifier System (LCS) 
to produce interpretable rules. It allows learning 
new attack and normal behavior patterns by 
interacting with a security expert. Labib et al. [21] 
developed a real-time IDS using Self Organizing 
Maps (SOM) to detect normal network activity and 
DoS attack. They preprocessed their dataset to have 
10 features for each data record. Each record 
contained information of 50 packets. Their IDS was 
evaluated by human visualization for different 
characteristics of normal data and DoS attack, but 
no detection rate was reported. Khreich et al. [22] 
proposed a system based on the receiver operating 
characteristic (ROC) to efficiently adapt ensembles 
of HMMs (EoHMMs) in response to new data, 
according to a learn-and combine approach. The 
proposed system is capable of changing the desired 
operating point during operations, and those points 
can be adjusted to changes in prior probabilities and 
costs of errors. Alexander et al. [23] proposed an 
ensemble approach of four decision trees and 
feature selection algorithms, trained on different 
sets of features, to detect the four attack types in 
KDD’99 dataset. The main idea is to exploit the 
strengths of each algorithm of the ensemble to 
obtain a robust classifier. For a summary of most 
research involving machine learning applied to 
IDSs, see [24, 25]. 

Current intrusion detection models are mostly 
based on typical machine learning algorithms. With 
the accumulation of new samples, their training 
time will continuously increase, and at the same 
time, they have difficulties in adjusting themselves 
in dynamic changing network environment. To 
remedy the existing IDS models limitations and 
institute intrinsic adaptability in IDS, we propose a 
learnable intrusion detection model, which 
combines the core of ensemble approach, 
incremental learning, and real-time detection for 
anomalous network connections.  
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3 PROPOSED MODEL 

 

Our model focuses on means of approaches that 
promote adaptability by automatic incremental 
learning ability when interacting with a dynamic 
changing environment, so we are oriented toward 
two types of incremental classifiers, namely, 
Decision trees (Hoeffding Tree) [26] and Algorithm 
Quasi-Optimal (AQ) [27][28]. These two machine 
learning approaches are actually suggested based 
on intensive research to build adaptive learning 
intelligent systems in a dynamic changing 
environment.  

Figs [1, 2] give an overview of the proposed 
model (LMAD). It consists of two phases, that is, 
Offline training phase and incremental online 
testing phase. In the next subsections, we will 
explain in details the components of the (LMAD) 
model. 

 
3.1 Offline Phase 

At the beginning, the offline phase is fed with 
network training data for training incremental 
classifiers. In this model, we use NSL-KDD [29] 
dataset for training. NSL-KDD is a dataset 
suggested to solve some of the inherent problems of 
the KDD'99 dataset which are mentioned in [30]. 
The 20% subset of the training dataset 
“KDDTrain+_20Percent“ [29] were used as it 
contains a reasonable number of network records. 

The second step in this phase represents the 
feature extraction component. We build this 
component over the research done in [31] for 
extracting most valuable and relevant features 
(MVRF). The output of this step will produce new 
training dataset with 19 effective features.  

 

 
Figure. 1. Offline phase for the proposed model 

 

 
 

 

 
Figure 2.  Incremental online phase for the proposed 
model 

 
The third step is to produce pair wise datasets for 

1-vs-1 model classification. This will produce 10 
datasets containing 2 different classes in each 
dataset. Table [1] lists common attack classes in 
KDD’99 dataset [32], while Table [2] represents 
the statistics for each pair wise dataset; some pair 
wise datasets have been post processed to prevent 
bias toward dominant class and solve for 
imbalanced dataset. For example, all U2R records 
in all datasets have been increased in a reasonable 
fashion using synthetic minority oversampling 
technique (SMOTE)[33]. 

 
Table 1. Attacks presented in KDD’99 dataset 

 

Attack 
Class 

Attack type (subclass) 

Probe portsweep, ipsweep, queso, satan, 
msscan, 

ntinfoscan, lsdomain, illegal-sniffer 

DoS apache2, smurf, neptune, dosnuke, land, 
pod, back, teardrop, tcpreset, syslogd, 

crashiis, arppoison, 
mailbomb, selfping, processtable, 

udpstorm, warezclient 

R2L dict, netcat, sendmail, imap, ncftp, xlock, 
xsnoop, sshtrojan, 

framespoof, ppmacro, guest, netbus, 
snmpget, ftpwrite, 

httptunnel, phf, named 

U2R sechole, xterm, eject, ps, nukepw, secret, 
perl, yaga, fdformat, ffbconfig, casesen, 
ntfsdos, ppmacro, loadmodule, sqlattack 
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Table 2. Pair wise datasets for 1-vs-1 classification 
  

Pair wise 
Dataset 

Records 
count 

Class-1 
distribution 

Class-2 
distribution 

Post 
processing 

NORMAL-
DOS 

22683 13449 
(53% 

Normal) 

9234 
(47% 
DOS) 

- 

NORMAL-
PROBE 

15738 13449 
(85% 

Normal) 

2289 
(15% 

PROBE) 

- 

NORMAL-
R2L 

13659 13449 
(98% 

Normal) 

210 
(2% R2L) 

SMOTE[3
3] 

NORMAL-
U2R 

13461 13449 
(99% 

Normal) 

11 
(<1% 
U2R) 

SMOTE[3
3] 

DOS-
PROBE 

11524 9234 
(80% 
DOS) 

2289 
(20% 

PROBE) 

- 

DOS-R2L 9444 9234 
(97% 
DOS) 

210 
(3% R2L) 

- 

DOS-U2R 9246 9234 
(99% 
DOS) 

11 
(<1% 
U2R) 

SMOTE[3
3] 

PROBE-
R2L 

2499 2289 
(91% 

PROBE) 

210 
(9% R2L) 

- 

PROBE-
U2R 

2301 2289 
(99% 

PROBE) 

11 
(<1% 
U2R) 

SMOTE[3
3] 

R2L-U2R 221 210 
(94% R2L) 

11 
(6% U2R) 

SMOTE[3
3] 

       Total 

records 

25243  

 
The fourth step is to train each pair wise dataset 

on incremental classification algorithm to produce 
10 unique trained classifiers. In this model, we use 
two powerful incremental learning algorithms, 
namely Hoeffding trees [26], a variant of decision 
trees algorithm and AQ [27], a type of Attributional 
calculus rule induction algorithm. The output of 
this step will produce a total of 20 trained 
classifiers for the previously mentioned algorithms. 

Hoeffding decision trees were introduced by 
Domingos and Hulten in [26]. They refer to their 
implementation as VFDT, an acronym for Very 
Fast Decision Tree learner. Decision trees are being 
studied because they represent current state-of-the-
art for classifying high speed data streams. The 
algorithm fulfills the requirements necessary for 
coping with data streams while remaining efficient. 
The Decision tree induction algorithm induces a 
decision tree from a data stream incrementally, 
briefly inspecting each example in the stream only 
once, without need for storing examples after they 
have been used to update the tree internal 
information. Domingos and Hulten presented a 
proof based on  Decision  bound   (a.k.a additive  

 
Chernoff bound)[34] guaranteeing that a Hoeffding 
tree will be very close to a decision tree learned via 
batch learning. They showed that the algorithm can 
produce trees of the same quality as batch learned 
trees; despite being induced in an incremental 
fashion. 

Algorithm Quasi-optimal (AQ) was introduced 
by Michalski in 1973 [35]. AQ is a powerful 
machine learning methodology aimed at learning 
symbolic induction rules from a set of examples 
and counterexamples. The algorithm learns 
hypotheses in the form of Attributional Rules [35]. 
The simplest form of Attributional rules is 

Antecedent Part  Consequent Part 
Where antecedent and consequent are complexes; 

conjunctions of Attributional conditions, for 
example 

[ src_bytes = 20...180 ] & [Service = vmnet OR 
ftp] &[Protocol = tcp ]      [Attack=R2L] 

Which means that an attack is of type R2L if 
src_bytes ranges from [20-180], and service in 
{vmnt, ftp} and protocol in {tcp}. In its newest 
implementations, AQ is a powerful incremental 
classifier with many new features to the original 
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AQ, and produced a highly versatile learning 
methodology with expressive representation 
language, able to tackle complex and diverse 
learning problems in machine learning [27]. AQ 
algorithm is best explained in [35]. 

The fifth step is to evaluate the 20 trained 
classifiers produced from step 4, using cross 
validation. The evaluation step at this stage gives an 
initial perception about the classification accuracy 
in term of detection rate, false positive rate and 
other validation metrics. The output of this 
component is 20 trained models along with their 
evaluation statistics report. Section 5 summarizes 
the evaluation results. 

By this end, we finish the offline training phase. 
The 20 models generated from the previous step are 
retained for future use in online phase, which will 
be discussed in the next subsection. 

 
3.2 Online Phase 

Fig [2] represents the online phase. At the 
beginning, new unseen records (test data) are fed 
into the feature extraction components, to extract 
effective feature. 

The next step is to classify the incoming records 
using the previously generated model from offline 
phase. The records are fed as sequential data (to 
simulate network stream) into the 20 classifiers to 
be classified. The results obtained from this step is 
an intermediate result, as each one of 20 classifiers 
produce a predicted class corresponds to one of the 
4 attacks or flag the record as normal. 

In the third step, we use the Bagging approach to 
figure out one of 4 attacks/normal classes. This step 
outputs soft classification (class probabilities) by 
voting over all classes returned from the previous 
step, this output would be useful in case of cost 
sensitive classification. For example, on a single 
record, the output of the Bagging component 
outputs the following probabilities: 

 
3 out of 20 classifiers produced Normal  

class P (Normal) =0.15 
7 out of 20 classifiers produced Dos  

class P (DoS) =0.35 
4 out of 20 classifiers produced Probe  

class P (Probe) =0.2 
4 out of 20 classifiers produced R2L  

class P (R2L) =0.2 
2 out of 20 classifiers produced U2R  

class P (U2R) =0.1 
 
By this result, the bagging components flag the 

record as DoS attack with probability of 35%, as it 
represents the majority among others. 

Two steps are involved at this level, the first is 
the classification shown above, and the second is to 
incrementally update (learn) the corresponding 
classifiers (generated from offline model) of the 
predicted value with new information obtained 
from record features and predicted result. For 
instance, in the previous example, all DoS 
classifiers will be updated. This ensures the model 
to be updated with the latest environment changes, 
yielding it adaptable to concept drift and deployable 
over diverse environments. 

 
4 ILLUSTRATIVE EXAMPLE 

To ensure the practicality and validity of the 
proposed model, we carried out an implementation 
for (LMAD). All components mentioned in the 
model have been implemented using Java 
programming language, WEKA [36], which is an 
open source tool for machine learning algorithms 
and data mining tasks, and massive online analysis 
(MOA) [37] which is an open source framework for 
data stream mining and big data processing. For 
training (offline) phase, 20% of NSL-KDD training 
dataset was used for training the model, and 20% of 
NSL-KDD test dataset was used for testing online 
phase. The testing data was fed into online phase as 
a stream, and then prequential evaluation [38] was 
carried out. 

In what follows, we explain in details the idea for 
incremental learning for both Decision trees and 
AQ algorithms. We illustrate the idea by small 
subset of network audit records (around 50 
records), applied sequentially on single pair wise 
classifier, namely, the R2L-U2R classifier in both 
algorithms. By doing this, we ensure that the 
generated information is comprehensible, tangible 
and the idea can be generalized to whole model.  

Table [3] lists first 5 records out of 50 random 
instances, and 3 features out of 19 features. The 
information illustrated in this table is shortened for 
convenience. The records are fed sequentially into 
both decision tree and AQ algorithms to dig out 
internal parameter adaptation of the algorithms 
based on incoming feature vector. After the first 4 
records, Decision trees generated the following 
rules: 

service = vmnet: predict R2L (4.000) using 
adaptive Naïve Bayes 

service = ntp_u: predict  U2R (2.000) using 
adaptive Naïve Bayes 

This means that, decision tree generated one node 
(service), and 2 leafs (vmnet, ntp_u). At each leaf, 
the number of corresponding instances is stored, 
and the prediction strategy uses adaptive naïve 
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Bayes, which is a combination of Naïve Bayes and 
majority class classification. Fig [3] visualizes the 
whole generated tree after 50 records have been 
processed. 

 
Table. 3. First 5 network records in incremental learning 

 
Record Protocol Service dst_host_srv_count Class 

1 tcp vmnet 255 R2L 

2 tcp vmnet 60 R2L 

3 tcp ntp_u 81 U2R 

4 tcp vmnet 26 R2L 

5 tcp ntp_u 2 U2R 

……. ….. …… …… ….. 

 

 
Figure. 3. Decision tree after processing 50 records 

The same experiment was carried on AQ 
algorithm. The following rules were generated after 
the first 4 records (generated rules are trimmed for 
better comprehension): 

Predict class U2R IF:  

   protocol_type in {tcp} ^ service in {ntp_u} ^ 
dst_host_srv_count=81.0   (1) 

Predict class R2L IF:  

   protocol_type in {tcp} ^ service in {vmnet} ^ 
26.0<=dst_host_srv_count<=255.0 (3) 

The last number between brackets represents the 
number of corresponding class instances observed 
so far. After processing the 50 records, the 
following rules were generated (generated rules are 
trimmed for better comprehension): 

Predict class U2R IF:  

a. protocol_type in {tcp,icmp,udp} ^ service 
in {vmnet,ftp,telnet}^ 
1.0<=dst_host_srv_count<=4.0  (15) 

b. protocol_type in {tcp,icmp,udp} ^ service 
in {ntp_u,ftp_data,other} ^ 
2.0<=dst_host_srv_count<=81.0 (12) 

Predict class R2L IF:  

a. protocol_type in {tcp,icmp,udp} ^ service 
in {vmnet,ftp_data,ftp} ^ 
26.0<=dst_host_srv_count<=255.0 (22) 

b. protocol_type in {tcp} ^ service in {imap4} 
^dst_host_srv_count=9.0 (1) 

Comparing the output of the 2 algorithms, the 
generated rules from both algorithms are 
homogenous, non-contradictory and tangible.  

Now, assume for the moment, we have a test 
record in the form [protocol=tcp, service=ftp_data, 
dst_host_srv_count=50]. If the model is to classify 
the testing record after it has learnt from the past 50 
records, it will classify the record as R2L attack, 
based on the previous rules from both algorithms. 
By these results, we ensure the model practicality 
and validity to be deployed in any environment, 
since the learned rules conform to a valid 
discrimination between different classes. 

 
5 EXPERIMENTAL RESULTS 

 

This section summarized the results of (LMAD) 
model obtained by testing and evaluation 
techniques. There are two evaluation techniques; 
each one corresponds to specific phase of the 
model. For offline phase, we used 10-fold cross 
validation to grasp initial measures of the model 
validity.  Table [4, 5] lists different evaluation 
metrics for Decision tree and AQ algorithms 
respectively. DR is the detection rate of the 
classifier, FP is the false positive rate, and F-
Measure is the harmonic mean of the classifier, 
which considers both precision and recall. RMSE is 
the root mean square error while AUC is the area 
under the ROC curve [39]. 

For online phase, we use prequential evaluation 
approach (a.k.a Interleaved Test-Then-Train). Cross 
validation can’t be used here, as the test records are 
fed as stream of network connections to the model, 
and cross validation requires the data to be fully 
present. Prequential testing is an alternate scheme 
for evaluating data stream algorithms [35] . Each 
individual example can be used to test the model 
before it is used for training, and from this, the 
accuracy can be incrementally updated. When 
intentionally performed in this order, the model is 
always being tested on examples it has not seen 
[40]. Tables [6, 7, 8] lists 5x5 confusion matrix for 
the online phase after observing 7000, 8000, 12000 
testing records respectively. The accuracy of the 
model has increased from 80% to 82.5% to 85% 
respectively. Tables [9-11] preview another 
perspective (2x2 confusion matrix) for the previous 
results. Comparing the results of such experimental 
work with the results of [23], we found that the 
average accuracy of our work is 85% relative to 
80% for 41 features used in the ensemble given in 
[23], which consists of decision trees only. 
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Table. 4. Offline model evaluation statistics for Decision 
tree 

 
Pair wise 
Classifier 

Metric DR FPR F-
Measure 

RMSE AUC 

NORMAL-DOS 99% 1% 0.99 0.086 0.99 

NORMAL-PROBE 97% 16% 0.96 0.15 0.99 

NORMAL-R2L 96% 6% 0.96 0.192 0.93 

NORMAL-U2R 97% 2% 0.97 0.158 0.98 

DOS-PROBE 93% 8% 0.93 0.2 0.97 

DOS-R2L 99% 8% 0.99 0.057 0.98 

DOS-U2R 95% 25% 0.95 0.034 0.84 

PROBE-R2L 99% 6% 0.99 0.096 0.98 

PROBE-U2R 96% 1% 0.963 0.184 0.99 

R2L-U2L 85% 18% 0.871 0.427 0.7 

 
Table. 5. Offline model evaluation statistics for AQ 

 
Pair wise 
Classifier 

Metric DR FPR F-Measure RMS
E 

AUC 

NORMAL-DOS 99% 0.2
% 

0.99 0.04 0.99 

NORMAL-PROBE 97% 2% 0.99 0.1 0.98 

NORMAL-R2L 99% 2% 0.99 0.1 0.98 

NORMAL-U2R 99% 0.2
% 

0.99 0.03 0.99 

DOS-PROBE 97% 3% 0.99 0.08 0.98 

DOS-R2L 100
% 

1% 1.0 0.01 0.99 

DOS-U2R 100
% 

9% 1.0 0.01 0.95 

PROBE-R2L 99% 1% 0.99 0.05 0.99 

PROBE-U2R 98% 0.3
% 

0.99 0.04 0.99 

R2L-U2L 97% 6% 0.97 0.16 0.95 

 

Table. 6. Confusion matrix for online phase after 
observing 7000 records 

Actual Predicted Normal DoS Probe R2L U2R 

Normal 1113 23 54 80 0 

DoS 260 401
4 

68 0 0 

Probe 275 49 1058 28 0 

R2L 504 1 4 1200 0 

U2R 11 0 0 0 3 

 
Table. 7. Confusion matrix for online phase after 
observing 8000 records 

Actual Predicted Normal DoS Probe R2L U2R 

Normal 1280 27 57 91 0 

DoS 181 2720 52 0 0 

Probe 282 49 1233 28 0 

R2L 554 1 5 1400 0 

U2R 15 0 0 21 4 

 

Table 8- Confusion matrix for online phase after 
observing 12000 records 

Actual Predicted Normal DoS Probe R2L U2R 

Normal 1899 34 76 141 2 

DoS 260 4014 68 0 0 

Probe 298 52 2023 29 0 

R2L 764 1 6 2115 1 

U2R 24 0 0 36 7 

Table 9. 2x2 Confusion matrix for table [6] 

Actual Predicted Normal Anomaly 

Normal 1113 175 

Anomaly 1050 4662 

Table 10. 2x2 Confusion matrix for table [7] 

Actual Predicted Normal Anomaly 

Normal 1280 175 

Anomaly 1032 5513 

Table 11. 2x2 Confusion matrix for table [8] 

Actual Predicted Normal Anomaly 

Normal 1899 253 

Anomaly 1346 8502 

 
 

6 CONCLUSION 

In this paper, a new learnable real-time model has 
been proposed for anomaly detection using 
ensemble of incremental classifiers. The model is 
built using decision trees and AQ classifiers. Such 
model has been tested using the NSL-KDD’99 
dataset, and it showed that it is capable to learn new 
rules from the input stream. The model confusion 
matrix showed that model accuracy has increased 
gradually from 80% to 85% after extra records have 
been processed. 
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