

N
C

S
C

 International Journal of Computer Networks and Communications Security

VOL. 2, NO. 7, JULY 2014, 232–235
Available online at: www.ijcncs.org
ISSN 2308-9830

Image Encryption Using Parallel RSA Algorithm on CUDA

Vaibhav Tuteja1

School of Information Technology and Engineering, VIT University, Vellore, India

E-mail: vaibhav.tuteja2011@vit.ac.in

ABSTRACT

In this paper we discuss Image Encryption and Decryption using RSA Algorithm which was earlier used for
text encryption. In today’s era it is a crucial concern that proper encryption decryption should be applied so
that unauthorized access can be prevented. We intend to build a general RSA algorithm which can be
combined with other image processing techniques to provide new methodologies and better encryption
decryption efficiency. One such implementation is by using edge detection method and converting the
images to their filtered form. CUDA is a platform for parallel algorithm implementation using CPU with
GPU support. The following technique has been implemented on CUDA considering host and device
interaction process. Thus, to make the algorithm more efficient we parallelize the algorithm using CUDA
block and grid methodology.

Keywords: Encryption, Decryption, RSA, GPU, Host, Device.

1 INTRODUCTION

In 1977, an algorithm called as the RSA
Algorithm was published by R. Rivest, A. Shamir,
and L. Adleman. RSA is an asymmetric encryption
system which uses two keys to encrypt and decrypt
data, namely the public key and the private key.
Depending on the requirement one of the keys can
be used for encryption while the other can act as the
decryption key. Various image processing
techniques can be used to encrypt and decrypt the
images like edge detection, histogram distortion,
pixel filtration, etc. The following algorithm
suggest the use of text encryption using RSA for
the generation of encrypted keys which can be used
and to initiate the encryption and decryption
process. Thus in order to initiate the image
encryption an encryption key (cipher form) must be
generated using the RSA technique and
corresponding to it a decryption key will be
generated (cipher form). Both these keys can be
passed as a parameter to a switch case holding the
image processing algorithms. If the generated key
matches with the case value of the image
processing algorithm the process will begin. Thus a
ciphered image will be generated which can be
passed on to the receiver to decrypt the image. This
methodology helps in better and secure transfer of

data. In order to increase the efficiency of the
algorithm, parallel computing is required which can
be accessed using CUDA host-device computation
technology. Each image will be processed on
different block and grid combinations controlled by
different devices in parallel. The host accepts the
data and copies it to the GPU devices for parallel
execution using thread processing techniques.

2 EXISTING RSA ALGORITHM

Generation of public and private keys using RSA
text based encryption.

A. Key generation

Choose two large distinct primes p and q and
then form the public modulus n = pq.

 Choose public exponent e to be coprime to (p −
1)(q − 1), with 1 < e < (p − 1)(q − 1).

 The pair (n, e) is the public key.
 The private key is the unique integer 1 < d

< (p −1) (q −1) such that ed = 1 mod (p −
1)(q −1). Encryption: Split a message M
into a sequence of blocks M1, M2, . . . ,
Mt where each Mi satisfies

0≤Mi < n. Then encrypt these blocks as

233

Vaibhav Tuteja / International Journal of Computer Networks and Communications Security, 2 (7), July 2014

(1)Decryption: Given the private key d and the
cipher text C, the decryption function is:

(2) Note that encryption does not increase the
size of a message. Both the message and the cipher
text are integers in the range 0 to n - 1.The
encryption key is thus the pair of positive integers
(e; n). Similarly, the decryption key is the pair of
positive integers (d; n). Each user makes his
encryption key public, and keeps the corresponding
decryption key private.

B. Image Encryption

Any image processing approach can be used with
the RSA algorithm to encrypt or decrypt the image.

One of the technique used in implementation is
the edge detection technique which aim at
identifying points in a digital image at which the
image brightness changes sharply or, more
formally, has discontinuities.

 Two filters to detect horizontal and

vertical change in the image.
 Computes the magnitude and direction

of edges.
 We can calculate both directions with

one single CUDA kernel.

Proposed Architecture

3 SCHEME USED

234

Vaibhav Tuteja / International Journal of Computer Networks and Communications Security, 2 (7), July 2014

With each iteration a particular pixel value is

fetched and is compared with the neighbouring
pixel values. The process continues till the highest
pixel intensity is found out. Comparing the picture
pixel values and the window pixel values an edge is
formed corresponding to the image pixel value.
Thus at the end of the process only those pixel
values are seen which have a particular intensity
from the image matrix.

Fig. 1. The compatibility of CUDA with OPENGL

4 PARALLEL ARCHITECTURE

A. The Programming Model

The CUDA parallel hardware architecture is
accompanied by the CUDA parallel programming
model that provides a core to core of abstractions
that enable expressing fine-grained and coarse-
grain data and task parallelism. The following
languages that can be chosen to express parallelism
in high-level languages like C, C++, FORTRAN or
driver APIs such as OpenCL™ and DirectX™-11
Compute

B. Advantages and Limitations of CUDA

 Advantages

CUDA is better than several other traditional
general purpose computation on GPU-GPU
(GPGPU) using graphics APIs.

Scattered reads – code can read from arbitrary
addresses in memory.

Shared memory – CUDA exposes a fast shared
memory region (16KB in size) that can be shared
amongst the threads.

In order to have a higher bandwidth shared
memory can be used as a user-managed cache,
using texture lookups

Fast access to GPU for copying and retrieving of
data. Supports integer and bitwise operations, with
additional integer texture lookups.

 Limitations

Just like C, CUDA has a recursion-free,
function-pointer-free support, with simple
extensions. However, a single process should run
spread across multiple disjoint memory spaces,
making it different from other C language runtime
environments. Fermi GPUs now have full support
of C++.

Texture rendering is not supported.
For double precision (only supported in newer

GPUs like GTX 260) there are some deviations
from the IEEE 754 standard: round-to-nearest-even
is the only supported rounding mode for division,
reciprocal, and square root. In, denormals,
signalling NaNs and single precision are not
supported; only two IEEE rounding modes are
supported (chop and round-to-nearest even), and
those are specified on a per instruction basis rather
than in a control word; and the precision of
division/square root is slightly lower than single
precision.

The latency and bus bandwidth between the
GPU and the CPU may be limited.

In order to achieve the best performance, 32
threads should be grouped together, with total of
1000 threads. Branches in the code do not affect
performance to a countable rate, provided that each
of 32 threads takes the same path for execution;
One of the limitation is the SIMD execution model
for inherently divergent tasks (e.g. traversing a
space partitioning data structure during ray tracing).

Unlike OpenCL, CUDA-enabled GPUs are only
available from NVIDIA (GeForce 8 series and
above, Quadro and Tesla).

Fig. 2. The basic working principle for CUDA.

235

Vaibhav Tuteja / International Journal of Computer Networks and Communications Security, 2 (7), July 2014

Fig. 3. Data Flow Diagram

C. Design Model

 Scan for CUDA enabled devices:
 IF(device not found)
 Exit;
 ELSE
 Copy to device
 Start the kernel
 Generate Ciphered Keys (for encryption

and decryption).
 WHILE(k!=0)
 {
 IF(k>=2)
 C=C*((m*m)%n) and k=k-2;
 ELSE IF(k<2&&k>0)
 C=C*(m%n) and k=0;
 ELSE
 C=C%n;
 }
 Scan image and key parameters {k,n}
 Switch(generated key)
 Match the case values
 IF match found (will be used while

encryption as well as decryption),
 Start the image encryption or

Decryption Process in the block (will
vary with different image processing
techniques),

 Else exit
 Exit the kernel
 Copy values from device to host

5 CONCLUSION

The new fusion of RSA with image processing
techniques is better than various other techniques
since it is fast and efficient because of the
parallelism embed within. Secondly the algorithm
is independent of a particular image processing
algorithm. One may use any algorithm based on
his/her choice or requirement of the system. There
is a lot more flexibility in the system – one may
replace RSA for the ciphered key generation
process with any other encryption techniques. On
the whole this approach is a fusion of security,
integrity, flexibility and efficiency.

6 REFERENCES

[1] Zhao, Gaochang, et al. "RSA-based digital
image encryption algorithm in wireless sensor
networks." Signal Processing Systems
(ICSPS), 2010 2nd International Conference
on. Vol. 2. IEEE, 2010.

[2] Chang, Chin-Chen, Min-Shian Hwang, and
Tung-Shou Chen. "A new encryption algorithm
for image cryptosystems." Journal of Systems
and Software 58.2 (2001): 83-91.

[3] Manavski, Svetlin A. "CUDA compatible GPU
as an efficient hardware accelerator for AES
cryptography." Signal Processing and
Communications, 2007. ICSPC 2007. IEEE
International Conference on. IEEE, 2007.

[4] Nickolls, John, et al. "Scalable parallel
programming with CUDA." Queue 6.2 (2008):
40-53.

[5] Ryoo, Shane, et al. "Optimization principles
and application performance evaluation of a
multithreaded GPU using CUDA."
Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of
parallel programming. ACM, 2008.

	Vaibhav Tuteja1

